Revision of proofs for MEG

Common methods of proof we studied:

- Induction
- Direct
- Contradiction
- Contrapositive

A conditional statement has the form:
If P is true, then Q is true. This can be written as $P \Rightarrow Q$. We assume P is true and that Q follows. P is called the "hypothesis" and Q is called the "conclusion".

In a direct proof for a conditional statement you assume P is true, and show that Q follows. $P \Rightarrow Q$.
The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$.
If the converse equals the statement, we call P and Q equivalent. In logical notation: $P \Rightarrow Q$ and $Q \Rightarrow P$ then $P \Leftrightarrow Q$. Even more notation: $(P \Rightarrow Q) \cap(Q \Rightarrow P) \Rightarrow(P \Leftrightarrow Q)$.

The contrapositive of $P \Rightarrow Q$ is $Q^{\prime} \Rightarrow P^{\prime}$. Here, the ' symbol means "not". Sometimes proving the contrapositive is easier than giving a direct proof. This isn't a "contradiction" since we're assuming something is true and then proving, not assuming something is true and disproving it. The contrapositive of the contrapositive is of course the original statement.

Proof by contradiction is when you assume the negation ("opposite") of what you're trying to solve, and by disproving that assumption you prove that the original (non-negation) must be true.

Mathematical induction is a method used to prove that a statement is true over the integers.
The most common mathematical formulation of induction, over the natural numbers:
Let $S(n)$ be a statement involving n. If $S(1)$ holds and for every $k \geq 1, S(k) \Rightarrow S(k+1)$, then for every $n \geq 1$, the statement $S(n)$ holds.

Induction can be extended over the natural numbers, to include negative integers:
Let $S(n)$ denote a statement regarding an integer n, and let $k \in \mathbb{Z}$ be fixed. If:
$S(k)$ holds
For every $m \geq k, S(m) \Rightarrow S(m+1)$
Then for every $n \geq k$ the statement $S(n)$ holds. (If we work backwards from k instead of forwards, i.e. $m \leq k, S(m) \Rightarrow S(m-1)$ then we can prove on a larger domain and up to all of the integers, from $(-\infty,+\infty)$.

Here, k is acting as our base case (this is a significant feature of induction proofs). In a textbook, most proofs with induction will be done with $k=0$ or 1 .

Quiz:
Direct Proof 1:
Let x and y be any two positive real numbers.

Prove that

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Direct Proof 2:

For $n \in \mathbb{Z}$, prove that $5 n^{2}+3 n+7$ is odd.
Proof by Contrapositive 1:
Let $n, m \in \mathbb{Z}$ and consider the statement: If $m n$ and $m+n$ are even, then m and n are even. Prove the contrapositive. You will have to consider cases.

Proof by Contrapositive 2:
Let x and y be positive real numbers, $x, y \in \mathbb{R}^{+}$.
Prove that:

$$
\sqrt{x}-\sqrt{y}=\frac{x-y}{\sqrt{x}+\sqrt{y}}
$$

Hence prove that if $x>y$, then $\sqrt{x}>\sqrt{y}$.
Give a simpler proof by considering the contrapositive.

Proof by Contradiction 1:

Logarithmic irrationality: Suppose for prime $p \neq 2, p^{x}=2$. Prove that x is irrational.

Proof by Contradiction 2:

Irrationality of roots: Let p be a prime number. Show that \sqrt{p} is also irrational.

Proof by Induction 1:

AM-GM inequality using Cauchy induction:
For the positive reals $a_{1}, a_{2}, \ldots a_{n}$,

$$
\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

Proof by Induction 2:

Proof of binomial theorem:
Prove that:

$$
(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}
$$

Where:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

And n ! within the positive integers is defined as:

$$
n!=1 \times 2 \times \ldots \times(n-1) \times n=\prod_{i=1}^{n} i
$$

Proof by Induction 3:

Prove that:

$$
e^{x}>x+1, \quad x \in \mathbb{Z}^{+}
$$

Challenge: Prove for $x \in \mathbb{R}^{+}(x \in(0, \infty))$

